

PHMSA - 2016 R&D Forum

Working Group #4

Underground Natural Gas Storage

Overview of Technical and Integrity Issues

Steve Nanney November 16, 2016

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Initial Thoughts on What to Consider

- Design standards
- O&M Standard Practices
 - Monitoring, evaluation tools and standards
- Integrity Management
 - Risk Assessment Tools
- Leak Detection
- Health Effects

U.S. Department of Transportation

2

Pipeline and Hazardous Materials Safety Administration

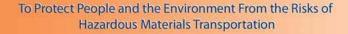
Aliso Canyon - Well SS25

- October, 2015, SoCal Gas' Aliso Canyon Well SS25 developed a natural gas leak
- Well plugged in mid-February 2016
- ~ 5 billion cubic feet of natural gas was released into the atmosphere
- ~ 5,790 households were relocated due to the co-release of natural gas with odorant (mercaptans).
- Cost over \$X00-million
- Aliso Canyon Field has 115 wells

3

U.S. Department of Transportation Pipeline and Hazardous Materials

Safety Administration


Underground Gas Storage

- ~ 400 interstate and intrastate underground natural gas storage facilities currently operate in the U.S.
- ~ 17,000 UGS wells
- ~ 4.7 trillion cubic feet of natural gas working capacity in U.S.
 SoC - We

SoCal Gas – Aliso Canyon Field, CA - Well SS25 – leak Oct. 2015 to Feb. 2016

U.S. Department of Transportation

Safety Administration

Pipeline and Hazardous Materials

Underground Gas Storage

- ADB-2016-02
- Safe Operation of Underground Storage Facilities for Natural Gas
- Operators of underground storage facilities should review their
 O&M and ER activities to ensure the integrity of underground storage facilities are properly maintained

Aliso Canyon, CA Field - leak

Pipeline and Hazardous Materials Safety Administration

ADB-2016-02

- O&M processes and procedures should be reviewed and updated at least annually, unless inspections for integrity warrant shorter review periods.
- O&M processes and procedures should include:
 - data collection and integration,
 - risk assessments,
 - monitoring,
 - operational limits,
 - mitigation measures, and
 - record keeping for any underground storage facility threat that could impact public safety, operating personnel, or the environment due to leakage, failure, or abnormal operating conditions.

6

Underground Gas Storage

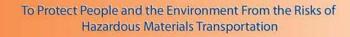
• After Aliso Canyon Leak – What's next?

- CA has strengthened their well regulations
- Rulemaking by PHMSA
 - API RP 1170 and 1171
- Public Workshops were conducted
- Task Force issued report on Underground Storage
 - Department of Energy
 - Department of Transportation PHMSA
 - Others

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

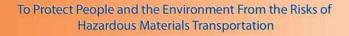
API RP 1171 and/or 1170 standards


• Reservoir design

maximum operating pressures and geologic formation and environmental effects

• Well drilling and completion -

- well control practices
- Operations and Maintenance
- Integrity Management
- Emergency Preparedness and Response
- Training


Pipeline and Hazardous Materials Safety Administration

U.S. Department of Transportation

How are reservoir/well maximum operating pressures established/maintained?

- A must----
- Are they maintained through-out well life
 - injection,
 - withdrawal and
 - stimulation processes?

U.S. Department of Transportation

Safety Administration

Pipeline and Hazardous Materials

How are well design and maximum well operating pressures established?

- Design factors
 - How should they be established?
 - What are they? Do you know?
- Production casing and tubing
 - should they have robust design factors and be maintained for well life?
 - last line of defense to protect from a leak or blow-out?
- Cementing practices
 - Height of cement above producing zones
 - Evaluation of integrity

Safety Administration

0

Are well standards established and maintained?

Establish and maintain:

- Maximum well operating pressure
- Design safety factors are they known?
- Diameter, weight/wall thickness, Grade, coupling type, packer locations, production perforations, internals, and wellhead rating, etc.
- When maintenance is performed is data maintained?

11

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Should wells flow through?

- Tubing only,
- Production casing w/no tubing, or
- Through tubing and production casing
- When is it safe to flow through any of these examples?
 - How should be the well casing and/or tubing condition/standards for maintaining safety?

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

How is well production casing and tubing designed for hoop stresses?

- What is the well design safety factor?
- Is it a set safety factor maintained for the life of the well?
- Should wells have different safety factors for:
 - flow in tubing only?
 - flow in production casing?
 - For integrity management assessments?
 - For populated or high consequence areas?

13

Pipeline and Hazardous Materials

Safety Administration

Safety Valves

- How many wells have safety valves?
 - Surface safety valves
 - Subsurface safety valves
- When are these safety valves needed?
- How often should they be tested?

U.S. Department of Transportation Pipeline and Hazardous Materials

Safety Administration

Mechanical Integrity Test

- How often should a well production casing and tubing mechanical integrity test be conducted?
 - ≤ 5-years, ≤10-years, ≤ 15-years, ≤-20 years, other
- What type tests should be conducted?
 - Noise and temperature logs:
 - Caliper log:
 - HR-MFL log (corrosion)
 - Cement Bond
 - Pressure test at what pressure range and when?

15

Pipeline and Hazardous Materials Safety Administration

Safe Operating Pressures?

- How should safe operating pressures be established or evaluated from a caliper log, HR-MFL Log or pressure tests?
 - Using design factors of casing or tubing
 - Remaining wall thickness or Other Methods
- Should safe pressures be established based upon some form of Barlow's Equation, B31G or R-STRENG, when an accurate corrosion log is used to find corrosion or other casing/tubing defects?
- What should be the pressure and hold time for a pressure test?

16

Pipeline and Hazardous Materials Safety Administration

Overview of PHMSA July Public Workshop

- Integrity Management Principles (importance of):
 - Risk assessments (with valid system information)
 - Design factors needed based upon casing string type
 - Anomaly evaluation how should they be evaluated?
 - Documentation
- Assessment tools:
 - Numerous ones are available;
 - Need to use them; and in particular, the correct tool for the threat;
 - Currently, there are varying degrees of use.

U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration

R&D Efforts/Priorities CA PUC Perspective

- Subsurface leak prediction and detection
 - Tools/Logs
 - Evaluation and safe pressure
- Efficacy of subsurface safety valves or a replacement device
- Through-tubing casing evaluation
- Health effects of exposure to methane and odorants

18

Pipeline and Hazardous Materials Safety Administration

Final Thoughts

Design standards

- Safety factors
- Single or Dual Barriers
- Subsurface safety valves

O&M evaluation tools and standards

- Logging Tools MFL, Cement Bond, Temperature, etc.
- Safe pressure, safety factors
- Remediation Tools

Integrity Management

- Risk Assessment Tools
 - High versus Low Pressure Wells
 - High Volume versus Low Volume Wells
- Leak Detection
 - Surface, Well head and Tubing Strings
- Health Effects exposure to methane and odorants

19

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration

Thank You

2

U.S. Department of Transportation

Pipeline and Hazardous Materials Safety Administration